THBLE OF CONTENTS

We are given a probability space (J_7,A,P) & a v.v. $3:J_7-J_8^d$ $E(131)=S_13(w)IdP(w)<\infty$ $(3e2^4(P)):$

ME HAVE SEEN:

If further:

\$:Jr>IR. has adensity,

Y:Jr->IR is another rv.

which has a density: fy(y)

they have a joint density:

\$\mathcal{E}_{\ma

 $\mathbb{E}(\S|Y)(\S_{i}y) = \frac{1}{\S_{i}(y)} \int_{-\infty}^{\infty} J_{\S_{i}y}(\S_{i}y) dx$

We are given a probability space (92, A, IP) & a v.v. $3: \mathcal{T}_{-}\mathbb{R}^{d}\mathbb{E}(|3|) = S_{-}[3(\omega)]d\mathbb{P}(\omega) < \infty \quad (3 \in \mathcal{L}^{1}(\mathbb{P})):$

LEHMA. (wrt. to another 92.V.) WE HAVE SEEN:

The c.e. duf. as on the RHSA Since has adensity,

(F(Z)Y)=g(Y) for some 9:?->R Boul measwrable)

8) E(E(\$14); A) = E(\$; A) bor 4 HEO(Y).

a) F(317) EOCY) Y: JZ-> R is another tru.

which has a density: fy(y)

they have a joint ausity:

(\$ 14)

 $\mathbb{E}(\S|Y)(\S_{i}y) = \frac{1}{\rho(y)} \int_{-\infty}^{\infty} d\S_{i}y (\S_{i}y) d\varkappa$

We are given a probability space (JZ, A, IP) & a v.v. $3: \mathbb{R}^{d} \mathbb{E}(|3|) = S |3(w)| dP(w) < \infty (3e2^{4}(P))$

3F(31Y) EOCY)

(F(317)=g(Y) for some g:?->R Boul measurable)

8) E(E(\$14); A) = E(\$; A) bor 4 HEO(Y).

LEMMM. (wrt. to another 92.V.) DEF. (wrt. & sub-o-alpebra of A.

Out y be a r.v. Yeff, E(141)<00. Out J be a sub-o-algebra of A. DEF. (wrt. 8 sub-o-alpebra) E(\$15) is the trandom variable satisfying: (E(\$15):JC>1Rd)

> a) E(\$15) e 5, By AHEZ:

 $\int \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \right) dP(w) = \int \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \right) dP(w) dP(w) = \int \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \right) dP(w) dP(w) dP(w) dP(w) = \int \frac{1}{2} \frac{1}{2} \frac{1}{2} dP(w) dP$ E(\(\xi\);\(\pi\);\(\pi\)

We are given a probability space (IZ, A, IP) & a v.v. $\leq 2 - \mathbb{R}^d \mathbb{E}(|\xi|) = 2 |\xi(w)| d\mathbb{P}(w) < \infty \quad (\xi \in \mathcal{L}^1(\mathbb{P}))$

Does this def makes sense?

It exists for Set, F=A, E(131)<00

B/It is unique in some sense

C/It represents owr entuition in simple

DEF. (wrt. 8 sub-o-alpebra) out of the a sub-o-algebra of A. E(\$15) is the transform variable satisfying:

a) E(\$1F) & F,

By AHED:

$$\int \xi(\omega) dP(\omega) = \int E(\xi|\xi) dP(\omega)$$

$$E(\xi;H)$$

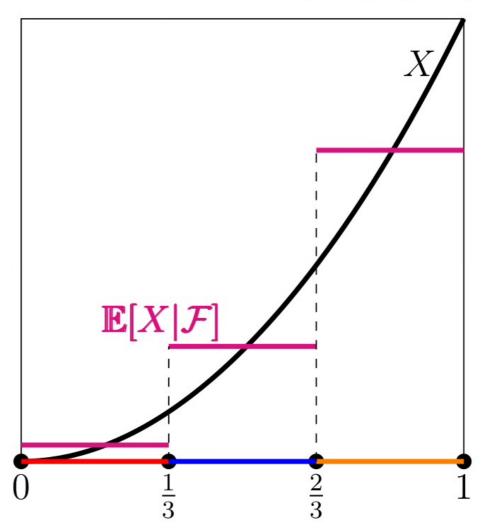
$$E(\xi(\xi|\xi);H)$$

Examples.

 \mathcal{F} is generated by $\{[0,\frac{1}{3}), [\frac{1}{3},\frac{2}{3}), [\frac{2}{3},1)\}$

by THEF:

$$\int_{\mathbb{R}} \mathbb{E}(\mathbf{x}) d\mathbf{P}(\mathbf{w}) = \int_{\mathbb{R}} \mathbb{E}(\mathbf{x}) d\mathbf{P}(\mathbf{w})$$



$$\frac{\mathcal{E} \times \text{3mples}}{X_1 \otimes X_2} = \frac{20_1 1_3^2}{1_1^2} A = \mathcal{P}(J^2),$$

$$\frac{X_1 \otimes X_2}{X_1 \otimes X_2} = \frac{1}{1_1^2} \times \frac$$

Existence & runiqueness measure theory recap.

Definition 3.1

On measurable space (Ω, \mathcal{F}) :

- \bullet μ is a measure, if
 - $\mu: \mathcal{F} \to [0, \infty], \mu(\emptyset) = 0.$
 - If $E = \bigcup_{i=1}^{\infty} E_i$ disjoint union, then $\mu(E) = \sum_{i=1}^{\infty} \mu(E_i)$.
- ν is a σ -finite measure if there exist sets $A_n \in \mathcal{F}$, s.t.
 - $\Omega = \bigcup_{n=1}^{\infty} A_n$
 - $\nu(A_n) < \infty$.

Definition 3.2 (Signed measure)

Given a measurable space (Ω, \mathcal{F}) $(\Omega \text{ is a set, on which } \mathcal{F} \text{ is a } \sigma\text{-algebra})$. α is a signed measure on (Ω, \mathcal{F}) , if

- $\alpha(E) \in (-\infty, \infty]$, $\forall E \in \mathcal{F}$.
- $\alpha(\emptyset) = 0$.
- If $E = \bigcup E_i$ is disjoint union, then $\alpha(E) = \sum_i \alpha(E_i)$, in such sense, that
 - If $\alpha(E) < \infty$, then there is absolute convergence,
 - 2 If $\alpha(E) = \infty$, then $\sum_{i} \alpha(E_i)^- < \infty$ and $\sum_{i} \alpha(E_i)^+ = \infty$.

Jordan's Theorem: $\exists \alpha_1, \alpha_2$ are positive measures, that $\alpha_1 \bot \alpha_2$ and $\alpha = \alpha_1 - \alpha_2$.

Absolute continuity.

Let

- \bullet μ be a finite or σ -finite measure on $\mathcal F$
- \bullet ν be a finite, signed measure on \mathcal{F} .

We say that measure ν is absolute continuous for μ ($\nu\ll\mu$), if

$$\forall C \in \mathcal{F} : \mu(C) = 0 \Rightarrow \nu(C) = 0.$$

Remark. If
$$v$$
 has a density with μ , i.e. $\exists f \in d_{00}(\mu) \cap d_{1}(\mu) \text{s.t.}$ $v(c) = Sf(x) \circ d_{1}(x) \text{ for } d_{2}(x) \text{ for } d_{2$

Theorem 3.3 (Radon-Nikodym)

- \bullet (Ω, \mathcal{F}) probability space.
- \bullet μ σ -finite, (enough: μ is β inite, β or row)
- 2.5 v a signed measure on F (we can think it is finite as well)

Then $\exists f \in \mathcal{F}$, s.t.

- (a) $\int |f(\omega)| d\mu(\omega) < \infty$,
- (b) $\nu(C) = \int_C f(\omega) d\mu(\omega), \forall C \in \mathcal{F}.$
- (c) If $f_1, f_2 \in \mathcal{F}$ satisfy (a) and (b), then $f_1(\omega) = f_2(\omega)$ for μ a.e. well ($\Rightarrow \vee$ a.e. well)

Notation:
$$f = \frac{\partial v}{\partial u}$$
, is the R-N derivative of vurtu.

R-N THM.

(II, F) me asurable space • u is a Binite measure on it • V) is a finite signed measure • V&u Then: BEEF

C.E. DEF.

Choose
$$\mathcal{U}(A) = \mathbb{P}(A) \forall A \in \mathcal{H}$$

$$V_{\frac{1}{2}}(A) = \int \frac{1}{2} (w) d\mathbb{P}(w) = \mathbb{F}(\frac{1}{2}; \mathcal{H})$$

then
$$V_{\frac{1}{3}}$$
 is a signed measure on $A_{\frac{1}{3}}^{\frac{1}{3}}$ $V_{\frac{1}{3}}$ $V_{\frac{1}{3}}$ is a signed m.on F , $V_{\frac{1}{3}}$ $V_{\frac{1}{3}}$ $V_{\frac{1}{3}}$ is a signed m.on F , $V_{\frac{1}{3}}$ $V_{$

then is a (Binite) signed measure on A, Bor HEP

• only takes values on $(-\infty,\infty)$ $\leq (-\infty,\infty)$

•
$$V_{\Xi}(\mathcal{O}_{\Xi_{i}}^{0}, \mathcal{O}_{\Xi_{i}}^{0}) = S_{\Xi_{i}}^{0}(\omega)dP(\omega) = S_{\Xi_{i}}^{0}(\omega)dP(\omega)$$

• $V_{\Xi_{i}}^{0}(\omega)$

• $V_{\Xi_{i}}^{$

lim & (w)= 11 \{w \in 4 \} \. \(\sigma \)

Uniqueress

We call the Radon-Nikodym derivative dright as a version of E(\$15).

Conditional Probability

Definition 4.1 (Conditional probability)

Let \mathcal{F} be a sub- σ -algebra of \mathcal{A} . For every $A \in \mathcal{A}$ conditional probability of A with respect to (w.r.t.) the σ -algebra \mathcal{F} :

$$\mathbb{P}(A|\mathcal{F}) := \mathbb{E}[\mathbb{1}_A|\mathcal{F}].$$

He way to think about it:

(Jy, A, P) prob. space.

ξeA,

Fis a sub-o-algebra of A $\mathbb{E}(\xi|\mathcal{F})$ is the information we have of ξ , when we are looking through a campa with resolution \mathcal{F} ".

£.9.

d

E(31A)=3

E(31F)

Proporties: 2HSat Linearity: $f(a \cdot X + bY \mid F) = a \cdot f(X \mid F) + b \cdot f(Y \mid F)$

Proof. Idea: Check whether RHS satisfies the def of conditional exp. Bor the random variable a.x+ by.

- 1) 2. E(XIF) + b. E(YIF) EF
- 2) 2. $\mathbb{E}(X|F) + b.\mathbb{E}(Y|F) \in \mathcal{Z}^{1}(\mathbb{P})$
- 3.) Sa. E(XIF)+b. E(YIF) dP = a SE(XIF) dP+b. SE(YIF) dP = SaX+b Y dP

 A

 SxaP

 SyaP

 H

 H

By Honotonicity:

$$X \leq Y \mapsto \mathbb{E}(XIF) \leq \mathbb{E}(YIF)$$

Pr. Asserme that JGEF st. P(G)>0 e on G we have E(XIF)(g) = E(YKF)(g) tyeb $0 < \int E(X-YIF)(g) dP(g) = \int (X-Y)(g) dP(g) \le 0$ for the linearity IGM and prop. of cond. or IGM.

Properties continued spec: towor property

(c) Csebisev inequality:

(12)
$$\mathbb{P}(|X| \geq a|\mathcal{F}) \leq a^{-2}\mathbb{E}[X^2|\mathcal{F}].$$

(d) Monoton convergence theorem: Let us assume, that $X_n \geq 0$, $X_n \uparrow X$, $\mathbb{E}[X] < \infty$ then

$$\mathbb{E}\left[X_n|\mathcal{F}\right]\uparrow\mathbb{E}\left[X|\mathcal{F}\right].$$

- (e) Applying the above for $Y_1 Y_n$: If $Y_n \downarrow Y$, $\mathbb{E}\left[\left|Y_{1}\right|\right], \mathbb{E}\left[\left|Y\right|\right] < \infty$, then $\mathbb{E}[X_n|\mathcal{F}] \downarrow \mathbb{E}[X|\mathcal{F}].$
- (f) **Jensen inequality**: If φ is convex, $\mathbb{E}[|X|], \mathbb{E}[|\varphi(X)|] < \infty$, then
- $\varphi(\mathbb{E}[X|\mathcal{F}]) \leq \mathbb{E}[\varphi(X)|\mathcal{F}].$ (13)

(g) Conditional Cauchy Schwarz:

(14)
$$\mathbb{E}\left[XY|\mathcal{F}\right]^{2} \leq \mathbb{E}\left[X^{2}|\mathcal{F}\right]\mathbb{E}\left[Y^{2}|\mathcal{F}\right].$$

(h) $X \to \mathbb{E}\left[X|\mathcal{F}\right]$ is a contraction on L^p , if $p \ge 1$: $\mathbb{E}\left[\left|\mathbb{E}\left[X|\mathcal{F}\right]\right|^{p}\right] \leq \mathbb{E}\left[\left|X\right|^{p}\right]$

 $\mathbb{F}(X|\mathcal{F}) \in \mathcal{L}^{\perp}(\mathbb{P})$

(i) If
$$\mathcal{F}_1 \subset \mathcal{F}_2$$
, then

So always the more primitive σ -algebra wins.

(j) If
$$X \in \mathcal{F}$$
, $\mathbb{E}[|Y|]$, $\mathbb{E}[|XY|] < \infty$, then

(15)
$$\mathbb{E}\left[X \cdot Y | \mathcal{F}\right] = X \cdot \mathbb{E}\left[Y | \mathcal{F}\right].$$

(k) $\mathbb{E}[X|\mathcal{F}]$ as projection: Let us assume, that $\mathbb{E}|X^2|<\infty$. Then $\mathbb{E}[X|\mathcal{F}]$ is the orthogonal projection of X to $L^2(\Omega, \mathcal{F}, \mathbb{P})$. In other words:

$$\mathbb{E}\left[\left(X-\mathbb{E}\left[X|\mathcal{F}\right]\right)^{2}\right]=\min_{Y\in\mathcal{F}}\mathbb{E}\left[\left(X-Y\right)^{2}\right].$$

(I) $X \to \mathbb{E}[X|\mathcal{F}]$ is self-adjoint on $L^2(\Omega, \mathcal{A}, \mathbb{P})$:

$$\begin{array}{ccc}
\mathbb{E}\left[X \cdot \mathbb{E}\left[Y \middle| \mathcal{F}\right]\right] & = & \mathbb{E}\left[\mathbb{E}\left[X \middle| \mathcal{F}\right] \cdot \mathbb{E}\left[Y \middle| \mathcal{F}\right]\right] \\
(16) & = & \mathbb{E}\left[\mathbb{E}\left[X \middle| \mathcal{F}\right] \cdot Y\right].
\end{array}$$

Properties of conditional expectation V

Let us define conditional variation w.r.t. σ -algebra (see [1, Def. 7.35] and [1, Statement 7.36]):

$$\operatorname{Var}(X|\mathcal{F}) := \mathbb{E}\left[X^2|\mathcal{F}\right] - \mathbb{E}\left[X|\mathcal{F}\right]^2$$
.

Then

(m)
$$\operatorname{Var}(X) = \mathbb{E}\left[\operatorname{Var}(X|\mathcal{F})\right] + \operatorname{Var}\left(\mathbb{E}\left[X|\mathcal{F}\right]\right)$$
.

(n)
$$\Omega = \bigcup_{i=1}^{\infty} \Omega_i$$
 is disjoint union and $\mathbb{P}(\Omega_i) > 0$.

Let \mathcal{F} be the σ -algebra generated by $\{\Omega_i\}_{i=1}^{\infty}$. Then for a r.v. X:

$$\mathbb{E}\left[X|\mathcal{F}\right] = \sum_{i} \frac{\mathbb{E}\left[X;\Omega_{i}\right]}{\mathbb{P}(\Omega_{i})} \cdot \mathbb{1}_{\Omega_{i}}.$$

$$46 / 114$$

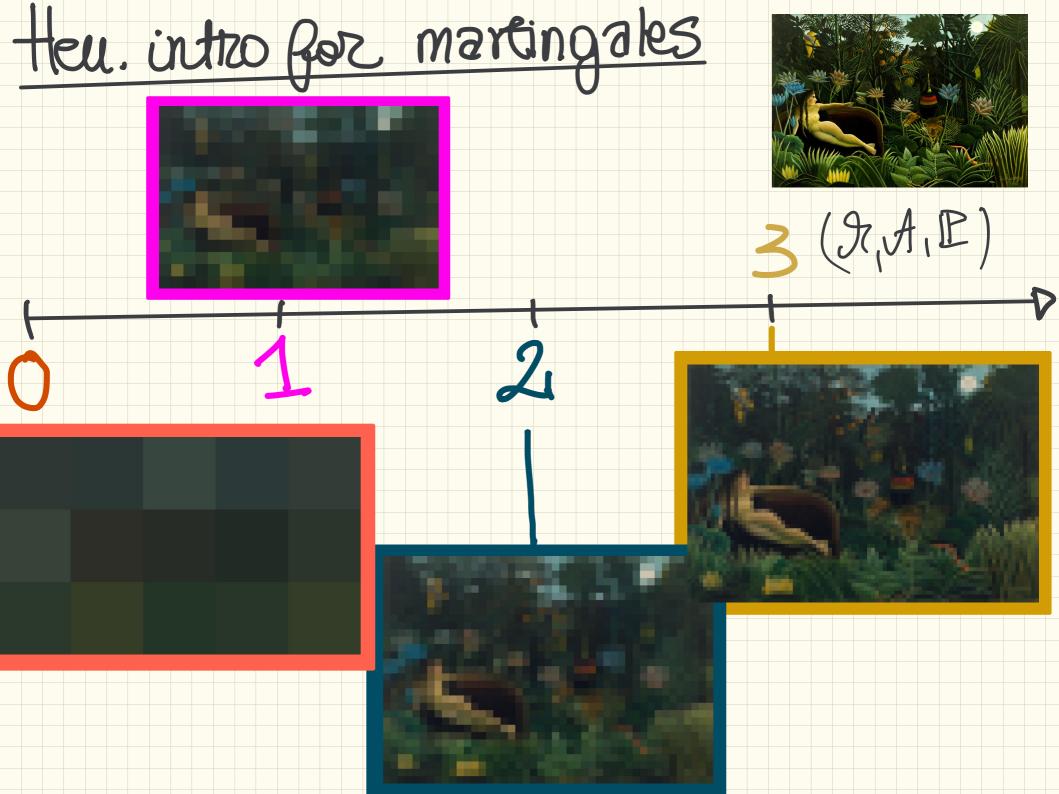
Properties of conditional expectation VI

(p) Bayes's formula: Let $F \in \mathcal{F}$ and $A \in \mathcal{A}$. Then

(17)
$$\mathbb{P}(F|A) = \frac{\int\limits_{F} \mathbb{P}(A|\mathcal{F})}{\int\limits_{\Omega} \mathbb{P}(A|\mathcal{F})}.$$

Is is easy to see, that this statement gives Bayes-theorem, in the case, when \mathcal{F} is generated by a partition.

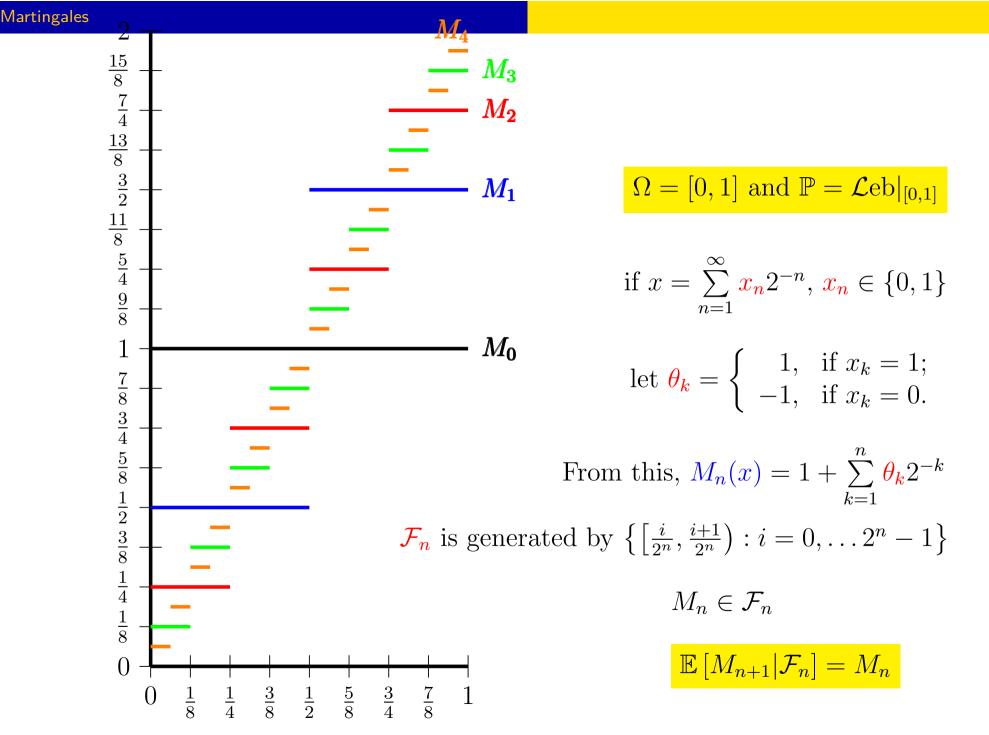
20 47 / 114



Definition 5.1

- An increasing sequence of σ -algebras \mathcal{F}_n is called filtration.
- X_n is adapted to \mathcal{F}_n , if $X_n \in \mathcal{F}_n$, $\forall n$.
- (X_n) is a martingale for filtration \mathcal{F}_n , if

 (a) $\mathbb{E}[|X_n|] < \infty$
 - (b) X_n is adapted to \mathcal{F}_n ,
 - (c) $\mathbb{E}(X_{n+1}|\mathcal{F}_n)=X_n, \forall n\geq 1.$
- If (a) and (b) are satisfied, but = of (c) is replaced by (c') \leq , then (X_n) is a supermartingale,
 - (c") \geq , then (X_n) is a submartingale.



Example 5.3

We throw a regular coin many times. Let the outcome of the n^{th} throw be $\xi_n=1$ if it's head and $\xi_n=-1$ if it's tail. Let $X_n:=\xi_1+\cdots+\xi_n$ and $\mathcal{F}_n:=\sigma\left\{\xi_1,\ldots,\xi_n\right\}$ if $n\geq 1$ and $X_0=0$ and $\mathcal{F}_0=\{\emptyset,\Omega\}$.

- · E(IXnI) < n
- · Xn E Jh, clearly &
- $\mathbb{E}\left[X_{n+1}|\mathcal{F}_n\right] = \mathbb{E}\left[X_n|\mathcal{F}_n\right] + \mathbb{E}\left[\xi_{n+1}|\mathcal{F}_n\right] = X_n.$

So X_n is a martingale for \mathcal{F}_n .

Generally

Example 5.2

Let us imagine a player, who plays a fair game (with expected value 0) very many times. Let M_n be his/her winning after the n^{th} game (or losing if M_n is negative) and let Y_n be the outcome of the n^{th} game and let $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n)$. Then (M_n) is a martingale for \mathcal{F}_n .

Example 5.4

Let X_1, \ldots, X_n i.i.d. $\mathbb{E}\left[X_i\right] = \mu$ and $S_n := S_0 + X_1 + \cdots + X_n$ be a random walk. Then $M_n := S_n - n\mu$ is a martingale for $\mathcal{F}_n := \sigma(X_1, \ldots, X_n)$. Namely: $M_{n+1} - M_n = X_{n+1} - \mu$ is independent of X_n, \ldots, X_1, S_0 , so

$$\mathbb{E}\left[M_{n+1}-M_{\mathcal{H}}|\mathcal{F}_n\right]=\mathbb{E}\left[X_{n+1}\right]-\mu=0.$$

So

$$\mathbb{E}\left[M_{n+1}|\mathcal{F}_n\right]=M_n.$$

If $\mu \leq 0$, then S_n supermartingale and if $\mu \geq 0$, then S_n submartingale.

Let X_n be a MC, whose transition matrix is $\mathbf{P} = (p(x,y))_{x,y}$. Let us assume, that for a function $f: S \times \mathbb{N} \to \mathbb{R}$:

(18)
$$f(x,n) = \sum_{y} p(x,y) f(y,n+1).$$

Then $M_n = f(X_n, n)$ is a martingale for $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$. In the special, when

(19)
$$h(x) = \sum_{y} p(x, y)h(y),$$

then $h(X_n)$ is martingale for $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$.

Proof.

$$\mathbb{E}\left[f(X_{n+1},n+1)|\mathcal{F}_n\right] = \sum_{y} p(X_n,y)f(y,n+1)$$
$$= f(X_n,n).$$

Example 5.6 (Gambler's Ruin)

Let $X_1, X_2, ...$ i.i.d. s.t. for some $p \in (0, 1)$, $p \neq 1/2$:

$$\mathbb{P}(X_i = 1) = p \text{ and } \mathbb{P}(X_i = -1) = q = 1 - p.$$

Let
$$S_n = S_0 + X_1 + \cdots + X_n$$
. Then

$$M_n := \left(\frac{q}{p}\right)^{S_n}$$

is a martingale.

This comes from that $h(x) = \left(\frac{q}{p}\right)^x$ satisfies condition $h(x) = \sum_{y} p(x, y)h(y)$ apply Theorem 5.5.

Example 5.7 (Simple symmetric random walk)

$$Y_1, Y_2, ...$$
 i.i.d. $\mathbb{P}(Y_i = 1) = \mathbb{P}(Y_i = -1) = 1/2$. $S_n = S_0 + Y_1 + \cdots + Y_n$. Then $M_n := S_n^2 - n$ is a martingale for $\sigma(Y_1, ..., Y_n)$.

Namely: we must show, that for $f(x, n) = x^2 - n$ the equality in (18) is satisfied. In other words, that

$$x^{2}-n=\frac{1}{2}((x-1)^{2}-(n+1))+\frac{1}{2}((x+1)^{2}-(n+1)).$$

And this is given by a trivial computation.

(18)
$$f(x,n) = \sum_{y} p(x,y)f(y,n+1).$$

Example 5.8 (product of independent r.v.s)

Given are $X_1, X_2, \dots \geq 0$ i.i.d. and $\mathbb{E}[X_i] = 1$. Then $M_n = M_0 \cdot X_1 \cdot \dots \cdot X_n$ is a martingale for $\mathcal{F}_n := \sigma(X_1, \dots, X_n)$.

Namely:

$$\mathbb{E}\left[M_{n+1}-M_n|\mathcal{F}_n\right]=M_n\cdot\mathbb{E}\left[X_{n+1}-1|\mathcal{F}_n\right]=0.$$

This latter is because X_{n+1} is independent of X_1, \ldots, X_n , hence X_{n+1} is also independent of the σ -algebra \mathcal{F}_n generated by them. So,

$$\mathbb{E}\left[X_{n+1}-1|\mathcal{F}_n\right]=\mathbb{E}\left[X_{n+1}-1\right]=0.$$

Let $\varphi, \psi : \mathbb{R} \to \mathbb{R}$ a convex function and ψ be increasing.

- (a) If M_n is a martingale, then $\varphi(M_n)$ is a submartingale.
- (b) If M_n submartingale, then $\psi(M_n)$ is a submartingale also.

This is an immediate corollary of Jensen's inequality (formula (13)) and the definition.

So, if M_n is a martingale, then e.g. $|M_n|$ and M_n^2 are submartingale.

59 / 114

Let M_n be a martingale. Then

(20)
$$\mathbb{E}\left[M_{n+1}^2|\mathcal{F}_n\right]-M_n^2=\mathbb{E}\left[(M_{n+1}-M_n)^2|\mathcal{F}_n\right].$$

Proof.
(21)
$$\mathbb{E}\left[\left(M_{n+1}-M_{n}\right)^{2}|\mathcal{F}_{n}\right] =$$

$$\mathbb{E}\left[M_{n+1}^{2}|\mathcal{F}_{n}\right]-2M_{n}\underbrace{\mathbb{E}\left[M_{n+1}|\mathcal{F}_{n}\right]}_{M_{n}}+M_{n}^{2}$$

$$=\mathbb{E}\left[M_{n+1}^{2}|\mathcal{F}_{n}\right]-M_{n}^{2}.$$

Now we prove the orthogonality of the increments of the martingale. 60 / 114

Let M_n be a martingale and let $0 \le i \le j \le k < n$. Then

(22)
$$\mathbb{E}\left[\left(M_{n}-M_{k}\right)\cdot M_{j}\right]=0.$$

and its obvious corollary:

$$\mathbb{E}\left[\left(M_{n}-M_{k}\right)\cdot\left(M_{j}-M_{i}\right)\right]=0.$$

Proof.

Proof of (22):
$$\mathbb{E}\left[\left(M_{n}-M_{k}\right)M_{j}\right] \stackrel{\mathcal{E}}{=} \mathbb{E}\left[\mathbb{E}\left[\left(M_{n}-M_{k}\right)M_{j}|\mathcal{F}_{k}\right]\right]$$

$$= \mathbb{E}\left[M_{j} \cdot \mathbb{E}\left[\left(M_{n}-M_{k}\right)|\mathcal{F}_{k}\right]\right] = 0$$
Wife \mathcal{E}

Corollary 5.12

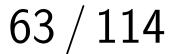
Using notation of Theorem 5.11:

$$\mathbb{E}\left[\left(M_n-M_0\right)^2\right]=\sum_{k=1}^n\mathbb{E}\left(\left(\mathsf{H}_{\mathsf{R}}^{-}\mathsf{H}_{\mathsf{R}^{-}\mathsf{I}}\right)^2\right)$$

Proof.

By using formula (23):

$$\mathbb{E}\left[\left(M_{n} - M_{0}\right)^{2}\right] = \mathbb{E}\left[\left(\sum_{k=1}^{n} M_{k} - M_{k-1}\right)^{2}\right] + 2\sum_{1 \leq j < k \leq n} \mathbb{E}\left[\left(M_{k} - M_{k-1}\right)^{2}\right] + 2\sum_{1 \leq j < k \leq n} \mathbb{E}\left[\left(M_{k} - M_{k-1}\right)\left(M_{j} - M_{j-1}\right)\right].$$



Let $m \leq n$, then from the definition:

Lemma 5.13

- If M_n is martingale, then $\mathbb{E}[M_m] = \mathbb{E}[M_n]$,
- If M_n is submartingale, then $\mathbb{E}[M_m] \leq \mathbb{E}[M_n]$,
- If M_n is supermartingale, then $\mathbb{E}[M_m] \geq \mathbb{E}[M_n]$.

The next example is about a famous betting strategy. Then we will see that