






































Conditional Expectation

Properties of conditional expectation V
Let us define conditional variation w.r.t. ω-algebra (see
[1, Def. 7.35] and [1, Statement 7.36]):

Var(X |F) := E
[
X

2|F
]
→ E [X |F ]2 .

Then
(m) Var (X )=E [Var(X |F)]+Var (E [X |F ]) .

(n) ! =
↑⋃

i=1
!i is disjoint union and P(!i) > 0.

Let F be the ω-algebra generated by {!i}↑
i=1.

Then for a r.v. X :

E [X |F ] =
∑

i

E [X ; !i ]
P(!i)

· !i .

46 / 114



Conditional Expectation

Properties of conditional expectation VI

(p) Bayes’s formula: Let F ↓ F and A ↓ A.
Then

(17) P (F |A) =

∫

F
P(A|F)

∫

!
P(A|F) .

Is is easy to see, that this statement gives
Bayes-theorem, in the case, when F is
generated by a partition.
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Martingales
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⌦ = [0, 1] and P = Leb|[0,1]

if x =
1P
n=1

xn2�n, xn 2 {0, 1}

let ✓k =

⇢
1, if xk = 1;

�1, if xk = 0.

From this, Mn(x) = 1 +
nP

k=1
✓k2�k

Fn is generated by
�⇥

i
2n ,

i+1
2n

�
: i = 0, . . . 2n � 1

 

Mn 2 Fn

E [Mn+1|Fn] = Mn

49 / 114







Martingales

Example 5.4

Let X1, . . . , Xn i.i.d. E [Xi ] = µ and
Sn := S0 + X1 + · · · + Xn be a random walk. Then
Mn := Sn → nµ is a martingale for Fn := ω(X1, . . . , Xn).
Namely: Mn+1 → Mn = Xn+1 → µ is independent of
Xn, . . . , X1, S0, so

E [Mn+1 → MN |Fn] = E [Xn+1] → µ = 0.

So
E [Mn+1|Fn] = Mn.

If µ ↔ 0, then Sn supermartingale and if µ ↗ 0, then Sn
submartingale.
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Martingales

Theorem 5.5
Let Xn be a MC, whose transition matrix is

P = (p(x , y))x ,y . Let us assume, that for a function

f : S ↘ N ≃ R:

(18) f (x , n) =
∑

y
p(x , y)f (y , n + 1).

Then Mn = f (Xn, n) is a martingale for

Fn = ω(X1, . . . , Xn). In the special, when

(19) h(x) = ∑
y p(x , y)h(y) ,

then h(Xn) is martingale for Fn = ω(X1, . . . , Xn).
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Martingales

Proof.

E [f (Xn+1, n + 1)|Fn] =
∑

y
p(Xn, y)f (y , n + 1)

= f (Xn, n).
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Martingales

Example 5.6 (Gambler’s Ruin)

Let X1, X2, . . . i.i.d. s.t. for some p ↓ (0, 1), p ⇐= 1/2:

P (Xi = 1) = p and P (Xi = →1) = q = 1 → p.

Let Sn = S0 + X1 + · · · Xn. Then

Mn :=
(

q
p

)Sn

is a martingale.

This comes from that h(x) =
(

q
p

)x
satisfies condition

(19). Hence we can apply Theorem 5.5.
56 / 114



Martingales

Example 5.7 (Simple symmetric random walk)

Y1, Y2, . . . i.i.d. P(Yi = 1) = P (Yi = →1) = 1/2.
Sn = S0 + Y1 + · · · + Yn. Then Mn := S

2
n → n is a

martingale for ω(Y1, . . . , Yn).

Namely: we must show, that for f (x , n) = x
2 → n the

equality in (18) is satisfied. In other words, that

x
2 → n = 1

2((x → 1)2 → (n + 1)) + 1
2

(
(x + 1)2 → (n + 1)

)
.

And this is given by a trivial computation.
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Martingales

Example 5.8 (product of independent r.v.s)

Given are X1, X2, · · · ↗ 0 i.i.d. and E [Xi ] = 1. Then
Mn = M0 · X1 · · · Xn is a martingale for
Fn := ω(X1, . . . , Xn).

Namely:

E [Mn+1 → Mn|Fn] = Mn · E [Xn+1 → 1|Fn] = 0.

This latter is because Xn+1 is independent of X1, . . . , Xn,
hence Xn+1 is also independent of the ω-algebra Fn
generated by them. So,
E [Xn+1 → 1|Fn] = E [Xn+1 → 1] = 0.
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Martingales

Theorem 5.9
Let ε, ϑ : R ≃ R a convex function and ϑ be increasing.

(a) If Mn is a martingale, then ε(Mn) is a

submartingale.

(b) If Mn submartingale, then ϑ(Mn) is a

submartingale also.

This is an immediate corollary of Jensen’s inequality
(formula (13)) and the definition.
So, if Mn is a martingale, then e.g. |Mn| and M

2
n are

submartingale.
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Martingales

Theorem 5.10
Let Mn be a martingale. Then

(20) E
[
M

2
n+1|Fn

]
→ M

2
n = E

[
(Mn+1 → Mn)2|Fn

]
.

Proof.
(21) E

[
(Mn+1 → Mn)2 |Fn

]
=

E
[
M

2
n+1|Fn

]
→ 2Mn E [Mn+1|Fn]

︸ ︷︷ ︸
Mn

+M
2
n

= E
[
M

2
n+1|Fn

]
→ M

2
n .

Now we prove the orthogonality of the increments of the
martingale. 60 / 114



Martingales

Theorem 5.11
Let Mn be a martingale and let 0 ↔ i ↔ j ↔ k < n. Then

(22) E [(Mn → Mk) · Mj ] = 0.

and its obvious corollary:

(23) E [(Mn → Mk) · (Mj → Mi)] = 0.

Proof.
Proof of (22):

E [(Mn → Mk)Mj ] = E [E [(Mn → Mk)Mj |Fk ]]
= E

[
Mj · E [(Mn → Mk)|Fk ]

︸ ︷︷ ︸
0

]
= 0
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Martingales

Corollary 5.12

Using notation of Theorem 5.11:

E
[
(Mn → M0)2]

=
n∑

k=1
E [(Mk → Mk→1)]2 .
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Proof.
By using formula (23):

E
[
(Mn → M0)2]

= E







n∑

k=1
Mk → Mk→1




2



=
n∑

k=1
(Mk → Mk→1)2

+ 2
∑

1↔j<k↔n
E [(Mk → Mk→1)(Mj → Mj→1)]︸ ︷︷ ︸

0

.
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Martingales

Let m ↔ n, then from the definition:
Lemma 5.13

If Mn is martingale, then E [Mm] = E [Mn],
If Mn is submartingale, then E [Mm] ↔ E [Mn],
If Mn is supermartingale, then E [Mm] ↗ E [Mn].

The next example is about a famous betting strategy.
Then we will see that

(24) ”you can’t beat an unfavorable game.”
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